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Solutions [i-3] describing the tension of a viscoplastie rectilinear strip of incom- 
pressible material with a linear velocity field are known. The solutions of a mathematical 
model are constructed in the papers mentioned without taking account of the inertial terms 

in the motion equations of the incompressible medium. Now, if the mathematical calculations 
are duplicated for a known linear velocity field, then by taking the inertial terms into ac- 
count we arrive at the deduction that no nonzero solution exists. The unsteady tension of a 
rectilinear strip in the scheme of an incompressible medium with internal strength, zero 
tangential stress, and linear velocity field is not the solution of the motion equations 
with inertial terms taken into account. Let us note that in the case of tension of a strip 
in the scheme of an incompressible idea] fluid, such a solution exists [4]. 

In this paper the exact solution of a mathematical model for unsteady strain of a rec- 

tilinear strip under tension is determined with a linear velocity field and with zero tan- 
gential stress in the scheme of a compressible viscoplastic medium. Analytical dependences 

are deduced to estimate the strip rupture time. The existence of a plasticity peak is noted 
by analogy with [5, 6]. 

i. Mathematical Model 

The stress tensor components ~11, ~12, ~22, the velocity vector components v~, v2 along 
the rectangular coordinate axes in the xl, x2 plane, the density of p of a continuous com- 
pressible medium are determined from the solution of the following relationships for an ar- 
bitrary closed domain: 

Equations of motion of a medium outside the field of external mass forces 

a~ulax j = p(avJat + vjav~laxj); (1. l )  
Continuity equation 

ap a (1 2) 

where the repeated subscripts i, j assume summation, and t ~0 is the time. 

According to the hypotheses formulated in [i], the relationships of a viscoplastic com- 
pressible body up to the assumption of incompressibility of the medium in the plane case 
have the form 

avl av2 ~ (~ i 
~ = '~ + I~ a:~ ~ )  + ~ cos 2q~,, (~ = T ((~' + 0.22), 

(~2~ = (~ - -  ~ ax~ az 2 ] - -  --f- cos  2q), 

{ avl av2 ~ as 
(~2 ---- 9 ~ , ' ~ z  2 + ~ ./-}- - T  s i n  2% 

tg 2q~ = ~ + ~ i / ~  a,~ a~ , 

(1.3) 

where T is the angle between the direction corresponding to the greatest principal stress 
and the xl axis, Os is the dynamic yield point, and ~ is the coefficient of dynamic viscosity. 
In the case of an incompressible medium, the system (1.3) agrees with the known relationships 
[2] for a rigidly plastic body (~ = O) and a viscous fluid (Os ~ 0). 
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Assuming the unsteady motion being considered for the compressible medium to be isen- 
tropic, the closing equation of state is representable in the form of a given barotropic 
function. The most customary form of writing the shock compressibility law for metals which 
sets up the connection between the mean pressure p and the density p has the form (see [7], 

for instance) is 

p =A[(9/9~--i], ~ = - -p ,  ( 1 . 4 )  

where A, n > 0 are constants to be determined by test. 

Let F(t, xl, xi) = 0 be the equation of the boundary os the domain under consideration. 
We require satisfaction of the kinematic 

OF~Or -+-v~OF/Ox i = 0 ( 1 . 5 )  

and the dynamic condition 

P i  = ~ j n i  (i, ] = 1, 2), ( 1 . 6 )  

on this boundary, where Pj is the projection of stresses acting on the boundary of the de- 
formable domain, and n i are the direction cosines of the outer normal to the boundary with 
respect to the coordinate axes. 

A domain of a continuous compressible medium with its boundary Fo, the initial velocity 
field and the density Po are given at the initial time t = 0. 

Together with the initial data and the equation of state, the system (1.1)-(1.6) de- 
fines a closed mathematical model for the unsteady motion of a compressible viscoplastic 
medium in a domain with variable boundary. 

2. Tension of a Rectilinear Strip 

We henceforth assume that the domain under consideration is a rectilinear strip which 

conserves its boundaries as lines in the whole time interval considered for the motion. In 
this case the equation of the boundary takes the form F(t, xl, xi) = { (x i -+ ai(t) = 0}, 
where for definiteness 2ai is the length, and 2a2 is the height of the strip. Let us con- 
sider tension of a strip with zero tangential stress (o12 = 0). We also formulate the fol- 

lowing assumption: during unsteady strain of a compressible viscoplastic medium the density 
is homogeneous in the domain under consideration, and is a function of just the time p = 
p(t). 

Because 012 = 0, from (1.3) there follows that 

Ovl/Ox~ go" Ovi/Oxl = O. ( 2 . 1 )  

Let us consider a sufficiently smooth stream function }(t, x~, xi) which is defined by the 
fo rmul a s 

v 1 = 0~/0x1, v 2 = --3"4~/0x2, ( 2 . 2 )  

hence, (2.1) is satisfied identically. 

Taking (2.2) into account as well as the fact that the density of the medium is a func- 
tion of just the time, we obtain from (1.2) and (1.3), respectively 

02~ 02~ 1 alp. (2 .3 )  
o Ox~ Ox~ p d t '  

r 02~ ( 2 . 4 )  (Ylt Ox---~ ' 

~ 2  = o - -  ~ h ~  - -  s ~ / 2 ,  a = o ( t ) ,  oh2 = O. 

S u b s t i t u t i n g  ( 2 . 4 )  i n t o  ( 1 . 1 ) ,  we o b t a i n  two n o n l i n e a r  d i f f e r e n t i a l  e q u a t i o n s  i n  t h e  
stream function because of (2.2). Differentiating the first equation with respect to the 
variable xi, and the second with respect to x~, and adding the results, we arrive at the 
equation 02(A~)/(0x10xz) ---- 0, which can be written in the form 

A~ = Cl(t, xl) + C~(t, xi), (2.5) 

where C1(t, xl) and C2(5, xi) are unkno~m functions of their arguments. 
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From the kinematic condition (1.5), (2.2), we have the following relationships on the 

boundary 

a ~ / a ~  = a I ~r Xl = al, --0~/~Xs = a2 ~r xs = as. ( 2 . 6 )  

H e r e  and  b e l o w  t h e  d o t  a b o v e  a q u a n t i t y  c o r r e s p o n d s  to  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  to  t i m e .  

As f o l l o w s  f rom ( 1 . )  and  ( 2 . 2 ) - ( 2 . 6 ) ,  one  o f  t h e  n o n t r i v i a l  s o l u t i o n s  f o r  t h e  v i s c o p l a s -  
tic strip is tension of the latter with a linear velocity field. In this case we have for 
the stream function 

i x~], (2 7) (t, xl, xO = w [~1 (t) x~ + ~s (t) 

h e n c e  we o b t a i n  b e c a u s e  o f  ( 2 . 3 )  and  ( 2 . 6 )  

- = d i p ,  • �9 

0 

time 

( 2 . 8 )  

A f t e r  s u b s t i t u t i n g  ( 2 . 4 )  and  ( 2 . 7 )  i n t o  ( 1 . 1 ) ,  we o b t a i n  f o r  t h e  f u n c t i o n s  c i ( 5 )  o f  t h e  

�9 C2 q +cl=O,c~-- s=O, 

whose solutions have the form 

c I = c10(i ~- cl0t) -I, c 2 = cs0(l -- cs0t) -I. (2.9) 

According to (2.8) and (2.9), the functional dependences in time with respect to the density 
and the law of variation of the strip boundary are expressed by the formulas 

p = po/(l q - c lo t ) ( t  --C2ot); ( 2 . 1 0 )  

a 1 = alo(t q-c lo t ) ,  a2 = aso(t - - c s o t ) ,  (2.11) 

where Czo 90, C2o ~0 are constants with dimensionality i/c determining the gradient of the 

strain rate of the boundary. 

We henceforth introduce dimensionless variables and parameters by means of the relation- 

ships 

ffi = ~ii/PoV~o, ~s = aJpoV~o, ~ = A/PoV~o, ( 2 . 1 2 )  

= ~/poVloalo, 0 = P/Po, t ' =  c2ot, ~ = elo/Cso, C s o > 0 ,  

where V1o = Cloazo is the rate of strip tension along the horizontal at the initial time. 

The bar above the dimensionless quantities is omitted below. Then because of (2.9) and 

(2.12), we have from (1.4), (2.4) and (2.10) 

O = [(t ~- yt)(t  - -  t ) ] - l ;  ( 2 . 1 3 )  

a~ : --A(O ~ - -  1) -k vO(t q- y-~) + aJ2~ 

as = - - A ( 0  ~ - -  1) - -  ~0(t  q- ?-~) - -  %/2. ( 2 . 1 4 )  

At the time t = 1 the height of the strip is zero, but the density becomes infinite. 
The formulas (2.13)-(2.14) have physical meaning in the time segment t ~ [0, i]. We hence 
note that the functional dependence (2.13) has an extremum: for y > 1 from (2.13) we obtain 
8min = 4/(2 + y + y-~) for t = (T -- 1)/27. In case T ~ [0, i], the density of the strip in- 
creases monotonically in the whole time segment t ~ [0, i]. A numerical computation of the 
change in strip material density with time by means of (2.13) is represented in Fig. i for 
different values of T > 0. Curves 1-6 in Fig. i correspond to y = I0; 5; 2; i; 0.4; 0.2. In 
particular, it follows from (2.14) that for T > i the stress components Ji in the strip and 
on the boundary have extremal values in the time segment t ~ [0, i] when the initial param- 

eters A, ~, Os are fixed. 

Under the effect of explosive loads real metals increase their density. Equation (1.4) 
is obtained for metals under the assumption 8 >i for t > 0. For the above to be satisfied 
for the rectilinear strip under consideration, the range of variation y ~(0, i] must be re- 
quired for the initial parameter y. In this case, the density and stress increase monotoni- 
cally during tension of the strip, as follows from (2.13) and (2.14). A numerical computa- 
tion using (2.14) is represented in Figs. 2 and 3 for the change in stress ~i on the strip 
with time for the fixed parameters A = 2.74, n = 5.5, v = 0.05, o s = 0.04. The numbers 1-4 
on the graphs correspond to y = i; 0.8; 0.4; 0.2. According to (2.12), the dimensionless 
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parameters are obtained for a steel strip which is stretched for the following values of the 
dimensional quantities: o s = 0.34 GPa, Po = 7.85"103 kg/m 3, alo = 0.i m, aio = 0.01 m, V1o = 

i000 m/sec, D = 4.104 kg/(m.sec), A = 21.5 GPa, n = 5.5. The last two parameters from (1.4) 
are obtained for steel, according to [7], in the 0-i00 GPa pressure range. The dynamic vis- 
cosity coefficient for low-carbon steels are found from [8]. 

The graphs in Figs. 2 and 3 show the homogeneity of the compressive stress field in the 
strip for t > 0, whose intensity increases with time. To estimate the boundary loads Pi (i = 
i, 2), we have the relationship oi = --Pi, ~2 = --P2 from (1.6). 

Therefore, an exact solution is obtained for the problem of unsteady motion of a recti- 
linear strip in a compressible viscoplastic medium scheme. A strip with a linear velocity 
field is stretched at a constant rate by homogeneous loads on the boundaries. The solution 
is obtained under the assumption of no tangential stress in the strip. The density of the 
medium is here a function of just the time. 

3. Rupture of the Strip 

Let us examine the solution obtained above for a strip in the case of its rupture under 
tension. For total rupture of a solid along the section under consideration, the following 

should be satisfied [9]: the time criterion for preparation of the body to rupture and the 
integrated time criterion of total closing of cracks on the basis of the nonstationary crack 
growth equation. The strip tension energy being liberated here is expended in crack develop- 
ment. A dynamic criterion for crack closing and total rupture reduces to an integral rela- 
tion [6], which takes the following form for a rectilinear strip 

t, 

~* ( 3. i) e q a l d t : - i - Z - - _ k l n  (I /So) ,  a~,  : a2o (~ - -  C2ot$), 
o 

where t, is the rupture time, q is the energy density being liberated by a sound wave, c is 
the speed of sound, ~ is the work of formation of unit crack area, k is the average coeffi- 
cient of reflection of the acoustic wave energy flux with respect to time, and So is the ini- 
tial fraction of the area of the body section under consideration which overlaps the cracks. 
The effective energy of dynamic rupture ~, = (~In S0)/(k--i)is determined from experiment~ 

According to [i0], the estimate of energy density for plane strain is realized by means 
of the formula 
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q = / ' 2 ( 1 -  v~) /2E,  

where T is the stress intensity, ~o is the Poisson ratio, and E is Young's modulus. 

to dimensionless quantities according to (2.12). We use the notation 

T1 = T/poV~., ~ ,  = C2ot , ,  (3.3) 
t h e n  we o b t a i n  f r o m  (3.1)-(3.3) 

f a*Ea~~ (3.4) T~ (t) (l + ?t) dt = 2~ (t - -  **)/?, [3 = ( t  - -  v~) ~ 2 3 
caloPoVlo 0 

I n  t h e  c a s e  o f  p l a n e  s t r a i n  o f  a s t r i p  w h e r e  t h e  s t r e s s e s  01 ,  ~2 ,  os  = ( 1 / 2 ) ( ~ 1  + ~2) 
occur and there are no tangential stresses, we obtain a formula from (2.14) for the stress 
intensity invariant 

T 1 = ~ / 2  + v( t  + ?-x)0. ( 3 . 5 )  

After substituting (3.5) into (3.4) and integrating, we obtain 

?o]~,  (2 + ?**)/8 -- va~(t + (3.6) 

+7)ln(t--T*)+v2[T*(t+~-~)[ ~'-7, +ln (1+7~,)(t_~,) ]=2~(1--~*)" 
To first order accuracy in ~, <<i, from (3.6) we have the following simple relationship for 
the time of strip rupture 

"~, = 2[~/(2I~ -}- ~' [ad2 + ~ (1 + ~,-~)1"). 

Analyzing (3.7) with respect to the parameter y ~ (0, i], we note that z 
mum 

(3.2) 

We turn 

(3.7) 

, has the maxi- 

~max = ~/[~ + ~(~, + 2V)I ~r ~ = V/(a72 + *). ( 3 . 8 )  

This feature of the dynamic behavior of viscoplastic media was first obtained and in- 

terpreted by test data in the case of explosive deformation of tubes in [5]. The existence 

of a dynamic plasticity peak during tension on a viscoplastic rod in a zero-dimensional for- 

mulation is shown in [6]. Therefore, the relationships (3.7) and (3.8) verify the deduction 
formulated in [5] that the dynamic plasticity peak is general in nature in the rupture of 

shells and the simplest structures fabricated from viscoplastic materials. 

As an illustration, we compute the rupture time of a steel strip with the following di- 

mensional parameters: o s = 0.34 GPa; ~ = 4.104 kg/(m'sec); Qo = 7.85"103 kg/m3; V1o = i000 

m/sec; ~io = 0.i0; a2o = 0.01; E = 200 GPa; a, = 2-105 kg/sec2; A = 21.5 GPa; n = 5.5; Vo = 

0.3. The speed of sound in the strip is estimated by the formula c 2 = dp/dp for p = Po in 

conformity with (1.4). Hence, c 2 = An/ o or c = 3873 m/sec. Going over to dimensionless 

quantities according to (2.12) and (3.3), we obtain Tma x = 0.72 for y = 0.71, ~ = 0.18.10 -3 

from (3.8) and (3.9). Taking into account that C~o/C2o = 0.71, tma x = ~max/C2o, where Cio = 
l0 4 i/sec, from (3.9) we have the maximum strip rupture time in dimensional form tma x = 51 
~sec. 

4. Dissipative Function 

Let us introduce the rate of mechanical energy dissipation per unit volume W. It is 

known [ii] that under real strain of an arbitrary domain in a continuous medium, the dissipa- 
tive function is positive everywhere in the domain. Let us consider W for the solution ob- 
tained above. From (2.2) and (2.4) we have 

O~ 02~ 
W = ~1~ Ox--T--~22"Ox---~2 �9 

Taking into account (2.7) and (2.12)-(2.14), we obtain in dimensionless form 

W = A(0 ~ - -  1)0/0 + (1 + ?-~)0[v(l  + ?-~)0 q- %/2].  ( 4 . 1 )  

From an analysis of this latter expression for n > 0 there follows that W~0 every- 
where in the strip when t ~ [0, I], y ~(0,i]. In case y > 1 this assertion is not evident. 

Let us examine the first component in (4.1). Taking into account the equalities 
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o ~ - t = ( o - t ) ( o  ~ - ~ + o  ~ - ~ + .  . + 1 ) , 6 / o = c ~ - c .  

we arrive at the following estimate for the sign: (~n _ i)~/0 ~0 for t ~[0, (1/2)(1 -- y-~)] 
and t ~ [(i -- y-l), i]. In the intermediate interval t ~ ((i/2)(i -- y-l), i -- y-~) the 
expression under consideration is negative. In this ease the general estimate of the 
sign of W depends an the relationship between the two members in (4.1). It is important 
to note that the dissipative function is positive for any y > 0 in the initial state of the 

strain of a viscoplastic strip. 
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INVESTIGATION OF MATERIAL DAMAGE UNDER CREEP AND 

CREEP STRENGTH 

A. M. Lokoshchenko UDC 539.4:539.376 

Within the framework of the mechanics of continuous media, the conception of the mechani- 
cal equation of state with a system of kinetic equations to determine the parameters qi char- 
acterizing the state under consideration 

p = ~(~, T, q. q~ . . . . .  q~); (1) 

dqj = a jd~  + b j d T  + cjdt,  ] = 1, 2, . . . ,  n. (2) 

which has been proposed in [i], is often the startin~ point to describe metal creep. Accord- 
ing to (i), the creep rate is determined by the stress ~, the temperature T, and a certain 
number of structural parameters qj. In the general case, (2) represent nonintegrable kinetic 
relationships to describe changes in the parameters qj, which in turn characterize a change 
in the material structure (~j, bj, cj are certain functions of ~, T, t, as well as of q~). 

3 
In order to describe at least certain qualitative features of the creep strength of metals, 
one structural parameter ~ is most often introduced for simplicity, and it is taken as a cer- 
tain measure of material damage. In solving creep and creep strength problems, usually either 
the physical meaning of the parameter w is not made specific, or w is understood to be the 
relative part of the specimen section damaged as a result of creep. The rupture time t = t* 
is often understood to be the time at which the damage reaches unity (~* = ~ (t*) = I). In 
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